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AbstractÐBy employing Lagrange equation of motion, a dispersion equation that accounts for the
growth of axisymmetric, as well as non-axisymmetric waves on an electrically charged liquid jet is de-
rived in this work, with considering the electric ®eld con®guration of a needle-plate apparatus for liquid
spraying. The available theory is capable of predicting the phenomenon of both of axisymmetric and
non-axisymmetric deformations of the liquid jet, which has long been observed in practice. It is demon-
strated that there exist certain ranges of such parameters as applied voltage and needle-plate distance
where the axisymmetric and non-axisymmetric modes of instability take place. The axisymmetric mode
has a dominant e�ect at low electric ®eld strength. As the electric ®eld strength is increased, the non-
axisymmetric mode is intensi®ed. The present theory indicates that the critical wavelength, and thus,
the droplet size are decreased with increasing applied voltage and/or shortening needle-plate distance,
which is consistent with the experimental results. # 1998 Elsevier Science Ltd. All rights reserved
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1. INTRODUCTION

An electrostatic liquid spraying process has many practical applications, such as the sources for

spacecraft propulsion, ink-jet printer, paint spraying, crop spraying, fuel spraying in combustion

systems, etc. Many aspects related to the theory and practice of electrostatic spraying are

reviewed due to Bailey (1974, 1986). The most common electrostatic liquid spraying apparatus

consists of an electrically grounded plate and a capillary tube which is raised to a high electric

potential. The liquid is passed through the capillary tube and subjected to an intense electric

®eld. As a result, a thin jet is emanated from the tip of capillary tube and breaks up into ®ne

droplets. The process of disintegration of an electrically charged liquid jet is one that involves

an instability at a liquid interface owing to electrostatic force, produced by induced charges,

overcoming the surface tension force of the liquid.

Some theoretical studies have been carried out in order to investigate the mechanism of the

breakup of an electrically charged liquid jet. According to Schneider et al. (1967), the surface of

liquid jet is assumed to be subjected to an initial small axisymmetric disturbance. This disturb-

ance will grow, giving the liquid jet a varicose form and eventually causing the breakup of the

jet. However, many experimental and practical studies clearly show that with the increasing of

the applied electric potential, non-axisymmetric disturbances are ampli®ed and the form of

liquid jet becomes sinuous, see Cloupeau and Prunet-Foch (1990, 1994). Huebner and Chu

(1971) considered both the axisymmetric and non-axisymmetric modes of liquid jet instability,

but for the case of needle-cylinder electrodes con®guration. Since the electric potential for nee-

dle-plate electrodes con®guration is di�erent compared to the needle-cylinder con®guration, the

theoretical analysis for this case is necessary.

In this work, we conduct the instability analysis of the electrically charged liquid jet for the

case of needle-plate apparatus for liquid spraying. The dispersion equation for the charged

liquid jet is derived, based on Rayleigh's technique, i.e. the Lagrange equation of motion for the

generalized coordinate, see Lord Rayleigh (1882, 1945). The electric ®eld con®guration of the
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needle-plate apparatus is considered when de®ning the electrostatic potential energy. Then the
axisymmetric and non-axisymmetric modes of the liquid jet instability are investigated based on
the derived dispersion equation. On the other hand, the experiments are conducted using a nee-
dle-plate apparatus for liquid spraying. The behavior of the liquid jet and its disintegration pro-
cess are visualized. Furthermore, the experimental results are compared with the calculated ones
obtained from the theoretical analysis.

We build our work as follows. The derivation of the dispersion equation is given in Section
2. Detailed results of the calculation of the growth rate of disturbations and critical wave-
lengths are presented and discussed in Section 3. Then the theoretical and experimental results
are compared and discussed in Section 4. Finally, some concluding remarks are given in
Section 5.

2 . MATHEMATICAL FORMULATION AND SOLUTION

We consider an in®nitely long cylindrical jet of radius a of an incompressible and inviscid
liquid with uniform density r. The liquid jet is assumed to be injected with low velocity into the
stationary air. We assume that gravity is negligible on the lengthscales of interest.

The surface of the perturbed jet (see ®gure 1) is represented in cylindrical coordinates (r, y, z)
by the equation

r0 � a0 � c cosmy cos kz �1�
where a0 is a mean radius, c is an in®nitesimal deviation from the cylindrical shape of the liquid
jet (c<<a0 and proportional to eot, o is the complex frequency and named as the growth rate of
the disturbance, t is time), m and k are the azimuthal and axial wave-numbers, respectively.
Here k= 2p/l is real and positive, l is wavelength and m is integral.

The analysis is carried out for the axisymmetric instability mode m = 0, as well as the non-
axisymmetric instability modes m$0. For the mode with m= 0 [see ®gure 1(a)], the cross sec-
tion of the jet is circular and its radius varies only along the axial direction z. This mode is
often called the varicose mode. For the mode with m = 1 [see ®gure 1(b)], the cross section of
the jet is still nearly circular with constant size in the axial direction. The axis of the jet, how-
ever, is sinuous. This mode is commonly referred to as the sinuous or ``kink'' mode.

Here a0 is related to the original undisturbed jet radius a by the requirement that the volume
of liquid per wavelength remains unchanged. This means

Figure 1. Instability modes of liquid jet deformation.
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Z l

0

Z 2p

0

1

2
r20 dy dz � pa2l �2�

which gives

a2 � a20 �
1

4
�1� dm�c2 �3�

where

dm � 1 as m � 0

dm � 0 as m � 1

Following Rayleigh, we will carry out the analysis based on the Lagrange equation of motion

for the generalized coordinate c.

The potential at any point in the vicinity of the jet V is found as the sum of two potentials:

one due to a charged circular cylinder of liquid, Vc, and the other appropriate harmonic term

due to the electrical charge to account for the surface perturbation, Vp, i.e.

V � Vc � Vp �4�
For the case of needle-plate con®guration (see ®gure 2) the electric ®eld strength and potential

were calculated by Jones and Thong (1971), using the method of images. The potential is given

by these authors as

f � ÿss
4pe0

ln

��������������������������
r2 � �hÿ z�2

q
� �hÿ z���������������������������

r2 � �h� z�2
q

� �h� z�

264
375 �5�

where ss is surface charge density per unit length, e0 is permittivity of the medium surrounding

the liquid jet and h is needle-plate distance.

At the tip of the needle, i.e. r = rc, z = h, we have f = V0. Here rc is needle radius, V0 is

applied voltage. Besides, in the vicinity of the tip we can accept h>>r and z1h. Then [5]

Figure 2. Needle-plate scheme for electrostatic spraying of liquid.
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becomes

f � V0

ln 4h=rc
ln 4h=r

By making use of this result and assuming that the potential on the surface of the unperturbed

jet is constant and equal to applied voltage, we can express the potential in the vicinity of the

unperturbed jet at a distance r from the jet axis approximately as

Vc � V0

ln 4h=a
ln 4h=r �6�

The surface is perturbed according to [1], giving rise to ®eld perturbations proportional to

cos my cos kz, so that the potential of the perturbed jet Vp takes the form

Vp � ClR�r� cosmy cos kz �7�
where R(r) is certain function of the coordinate r and Cl is constant.

Vp satis®es the Laplace equation

r2Vp � 0 �8�
Writing this equation in cylindrical coordinates we obtain the Bessel equation

@2R

@r2
� 1

r

@R

@r
ÿ k2 �m2

r2

� �
R � 0 �9�

which gives the solution

R�r� � C2Im�kr� � C3Km�kr� �10�
Here, Im(kr) and Km(kr) are the modi®ed Bessel functions of the ®rst kind and the second kind,

respectively, both of integral order m, C2 and C3 are constants. Therefore

Vp � �C4Im�kr� � C5Km�kr��cosmy cos kz �11�
The function Im(kr) is in®nite at kr =1. This makes it unsuitable for the region outside the jet

and must be excluded, i.e. C4=0. As a result, the potential Vp gets the following form

Vp � C5Km�kr�cosmy cos kz �12�
Substitution of [6] and [12] into [4] gives

V � V0

ln 4h=a
ln 4h=r� C5Km�kr�cosmy cos kz �13�

It is assumed that the potential on the surface of the jet is constant at V0, i.e. V = V0 at r = r0.

With the use of this boundary condition and let a0=a, Km(kr0)1Km(ka), we obtain

C5 � cV0

a ln 4h=a

1

Km�ka� �14�

Therefore, the electric potential in the vicinity of the liquid jet becomes

V � V0

ln 4h=a
ln 4h=r� c

a

Km�kr�
Km�ka� cosmy cos kz

� �
�15�

The surface charge density is calculated according to

ss � ÿe0�ngradV�r�r0 � ÿe0
@V

@n

����
r�r0

�16�

where n is unit vector perpendicular to the surface.
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Since ss is assumed to vary only in the radial direction, we have

ss � ÿe0 @V
@r

����
r�r0
� ÿ e0V0

ln 4h=a
ÿaÿ1 � c

a2
cosmy cos kz� ck

a

K 0m�ka�
Km�ka� cosmy cos kz

� �
�17�

with neglecting the higher order in c. Here we take the approximation

K 0m�ka�1K 0m�kr0� �
@Km�kr�
@�kr�

����
r�r0

The charge per unit length of the perturbed jet is given by

Qp � 1

l

Z 2p

0

Z l

0

ss dS �18�

where the di�erential area dS in cylindrical coordinates is expressed as

dS � r0 dy dz �19�
By using [17], [18] and [19] for calculating Qp correct to second-order, we have

Qp � 2pe0V0

ln 4h=a
1ÿ 1

4

c2

a2
ÿ 1

4

c2k

a

K 0m�ka�
Km�ka�

� �
�20�

The potential energy per unit length of the jet due to electri®cation is given as

Pp � 1

2
QpV0 � pe0V2

0

ln 4h=a
1ÿ 1

4

c2

a2
ÿ 1

4

c2k

a

K 0m�ka�
Km�ka�

� �
�21�

The charge and the potential energy per unit length of the unperturbed jet are, respectively

Q0 � 2pe0V0

ln 4h=a
�22�

P0 � 1

2
Q0V0 � pe0V2

0

ln 4h=a
�23�

which follow from [20] and [21], respectively, with the perturbation terms set to zero.
The change in the electrostatic potential energy of the charged liquid jet can be calculated

with the use of [21] and [23]

~PE � Pp ÿ P0 � ÿ p
4

e0V2
0

a2 ln 4h=a
1� ka

K 0m�ka�
Km�ka�

� �
c2 �24�

According to Landau and Lifshitz (1960), only the energy of the conducting liquid jet, and not
that of the whole system, appears in PÄE. So PÄE pertains to a system which is not energetically
closed. For a system whose electric potential is kept constant, the change in electric potential
energy is shown to be PE=ÿPÄE.

Generally, we have

PE � p
4

e0V2
0

a2 ln 4h=a
1� ka

K 0m�ka�
Km�ka�

� �
�1� dm�c2 �25�

The change in the potential energy due to surface tension, Ps, and the kinetic energy, K, have
already been given by Chandrasekhar (1981). They are, per unit length

Ps � ÿ p
4

s
a
�1ÿm2 ÿ k2a2��1� dm�c2 �26�

K � p
4

ra2

ka

Im�ka�
I 0m�ka�

�1� dm� _c2 �27�
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Here

I 0m�ka� �
@Im�kr�
@�kr�

����
r�a

s is surface tension and r is liquid density.
Since the Lagrangian L is given by

L � K ÿ Ps ÿ PE �28�
the expression for L is obtained by substituting [25], [26] and [27] into [28].

By substituting [28] into the Lagrange equation of motion for the generalized coordinate c

d

dt

@L

@ _c

� �
ÿ @L
@c
� 0 �29�

we obtain the following di�erential equation

�cÿ s
ra3

kaI 0m�ka�
Im�ka� �1ÿm2 ÿ k2a2�c� e0V2

0

ra4 ln 4h=a
kaI 0m�ka�
Im�ka� 1� ka

K 0m�ka�
Km�ka�

� �
c � 0 �30�

With the displacement of the surface cA eot the above di�erential equation reduces to the dis-
persion equation

o2 � s
ra3

kaI 0m�ka�
Im�ka� �1ÿm2 ÿ k2a2� ÿ e0V2

0

ra4 ln 4h=a
kaI 0m�ka�
Im�ka� 1� ka

K 0m�ka�
Km�ka�

� �
�31�

For the axisymmetric (varicose) mode m= 0, by taking into account the fact that

I 00�ka� � I1�ka�
K 00�ka� � ÿK1�ka�

equation [31] becomes

o2 � s
ra3

kaI1�ka�
I0�ka� �1ÿ k2a2� ÿ e0V2

0

ra4 ln 4h=a
kaI1�ka�
I0�ka� 1ÿ ka

K1�ka�
K0�ka�

� �
�32�

For the non-axisymmetric (kink) mode m = 1, with the use of

ka
I 0m�ka�
Im�ka� � ka

Imÿ1�ka�
Im�ka� ÿm

ka
K 0m�ka�
Km�ka� � ÿka

Kmÿ1�ka�
Km�ka� ÿm

the dispersion relationship yields

o2 � ÿ s
ra3

k2a2 ka
I0�ka�
I1�ka� ÿ 1

� �
� e0V2

0

ra4 ln 4h=a
ka

I0�ka�
I1�ka� ÿ 1

� �
ka

K0�ka�
K1�ka� �33�

3. RESULTS AND DISCUSSIONS

Dispersion equation [31] gives the relation between the growth rate o, the wavelength of the
disturbance l, the applied electric potential V0, with considering the geometry of the system for
liquid spraying and physical properties of the ¯uid for arbitrary deformations of the charged
liquid jet. Since it is assumed that the liquid jet is initially subjected to arbitrary disturbances
involving all possible wavelengths, the critical breakup wavelength lcr corresponds to the maxi-
mum value of growth rate ocr.

P. H. SON and K. OHBA610



If o2 is less than zero, the real part of the growth rate o is zero and the value of o is imagin-
ary. Since the surface wave amplitude c is proportional to eot, negative o2 represents oscillatory
motion, and the initial disturbance does not grow. Thus the liquid jet becomes stable. If o2 is
greater than zero, the quantity o has a positive real value. Positive values of o correspond to
an unlimited growth of the disturbance. The exponential growth of wave amplitude with time
leads to instability of the jet surface and breakup of the jet into droplets.

Numerical calculation of the growth rate was carried out for the axisymmetric (varicose)
mode m = 0 and non-axisymmetric (kink) mode m= 1, using [32] and [33], respectively. Here
we make use of dimensionless quantities o*2=o2/s/ra3 and l* = l/2pa. The quantities used in
the calculations are: water density r = 999 kg/m3, surface tension of water in the air s = 0.0728
N/m and liquid jet radius a = 0.1 mm.

We have also calculated the growth rate for non-axisymmetric modes m= 2 and m = 3,
using [31]. The results of calculation showed that o*2

m = 1>o*2
m = 2>o*2

m = 3. The fact that the
kink mode m = 1 has the highest growth rate of all other non-axisymmetric modes means that
the kink mode m = 1 is prevalent over other non-axisymmetric modes. This fact is also sup-
ported by our experimental observations. Hence we represent here the numerical results for only
the kink mode m= 1.

In the case of uncharged liquid jet (applied voltage V0=0), the expressions for growth rate of
varicose and kink modes could be obtained from [32] and [33], respectively, by setting the sec-
ond term of the right-hand side, which contains the quantity V0, to zero.

For the varicose mode, the growth rate reads

o2 � s
ra3

kaI1�ka�
I0�ka� �1ÿ k2a2� �34�

This is the well-known result obtained by Rayleigh. It is clear that the liquid jet is unstable
when ka>1 or l>2pa, i.e. when the wavelength is greater than the periphery of the liquid jet.
The critical maximum growth rate occurs at lcr/2pa = 1.44, or lcr=9.05a.

For the kink mode, we have

o2 � ÿ s
ra3

k2a2 ka
I0�ka�
I1�ka� ÿ 1

� �
�35�

In this case, o2 is negative for any ka. Thus, the kink mode does not take place for the
uncharged liquid jet. This statement has also been made by Rayleigh. It is worth to note here
that in the present analysis, the velocity of the liquid jet is considered to be small and the inter-
action of the jet with surrounding medium is negligible.

The growth rates for the case V0=0 are shown on ®gure 3a.

The e�ects of the electric ®eld strength are investigated through two parameters: applied
voltage and needle-plate distance. The increase in electric ®eld strength means the increase
in applied voltage and/or shortening of the needle-plate distance. It is clear that with
increasing electrical charge the critical wavelength l*

cr is decreased. For example, for the
needle-plate distance h = 20 cm, l*

cr of the varicose mode shifts from 1.20 as V0=2 kV (see
®gure 3a) to 0.63 as V0=4 kV and gets 0.31 as V0=6 kV (see ®gure 3b). This tendency
continues with further increasing in V0 and is similar for the kink mode. The decrease in
the critical wavelength evidently leads to the disintegration of the liquid jet into the dro-
plets with smaller size.

As indicated on ®gure 3, in the case of low applied voltage V0 the critical growth rate o*2 for
the varicose mode is larger than that of the kink mode, while the corresponding critical wave-
length l*

cr for the varicose mode is smaller than that of the kink mode (see ®gure 3a). Therefore
the varicose mode has a dominant e�ect on the instability of liquid jet at the short wavelength
at low voltage. However with the further increase in the applied voltage V0 the critical growth
rate of the kink mode increases rapidly and eventually approaches the critical growth rate of the
varicose mode at the same critical wavelength at about 10 kV (see ®gure 3b). Hence the link
mode is more pronounced the higher the electrical charge. However, these calculated results of
the present theoretical analysis leave the question whether the varicose or the kink mode has a
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dominant e�ect in the range of short wavelength at high applied voltage unanswered since the
critical growth rates and critical wavelengths of both the varicose and kink modes are of the
same magnitude. Besides, in the case of high applied voltage the instability of the liquid jet at
long wavelength can not be predicted by this theory since the critical growth rate appears in the
short wavelength ranges.

We can see from the ®gure 3 that as the voltage is increased, the critical growth rate is
increased too. The dimensionless critical growth rates o*2 of the varicose mode are 0.142, 0.714
and 9.928, and those of the kink mode are 0.003, 0.564 and 9.849 for applied voltages 2, 4 and
6 kV, respectively. In jet breakup the larger the critical growth rate, the shorter the length of the
liquid jet prior to breakup.

As the needle-plate distance h is shortened, the behavior of the instability modes, and
thus the phenomenon of breakup of the liquid jet has the same tendency such as when
the electric potential is increased. The growth rate variation with needle-plate distance is
given in ®gure 4.

Thus, the analytical results presented here exhibit that the instability modes and disintegration
of the electrically charged liquid jet strongly depend upon the electrical ®eld strength.

Figure 3. Growth rate variation with applied voltages at needle-plate space h= 20 cm.
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4. COMPARISON WITH EXPERIMENTAL RESULTS

The needle-plate apparatus for liquid spraying (see ®gure 2) is used in the present exper-
iments. A stainless steel needle is of 0.2 mm and 0.4 mm in inner and outer diameters respect-
ively. The needle is placed at 10, 20 and 30 cm above an electrically grounded funnel. A positive
DC high voltage up to 40 kV is applied to the needle. Distilled water is fed to the needle by a
microtube pump at the mass ¯ow rates mÇ ranged from 1 to 3 g/min. The behavior of the liquid
jet deformation and droplet formation process are recorded by using a high speed video camera
at 500 frames/s.

Since a high electric potential is applied to the small stainless steel needle and the plate is elec-
trically grounded, the electric ®eld is extremely high in the region around the needle tip with
very small radius of curvature compared to the region near the edge of the grounded plate,

whose diameter is 45 cm and much larger than the needle. The jet instability and its disinte-
gration process is sensitive to the electric ®eld strength. Thus, the region near the needle tip with
high electric ®eld strength and charge density is thought to have a deciding e�ect on the liquid
jet deformation and disintegration.

The photographs of the liquid jet deformation obtained at h = 20 cm and mÇ=3.07 g/min are
shown in ®gure 5. At the applied voltages below 10 kV only the varicose mode takes place,
which is consistent with the analytical results. At the potential larger than 10 kV the kink mode
appears but only slightly. As the voltage increases furthermore, a stronger waving motion of the
liquid jet occurs. We can see in these pictures the coexistence of the varicose and kink modes at
high voltage. However, the kink mode of the liquid jet instability always takes place at long
wavelength, which is in contrast with the theoretical results. The reason is possibly that this
theoretical analysis is based on the assumption that the deformation of liquid jet from its equili-
brium shape is very small relative to the jet radius. Therefore, it might not accurately describe

the development of the waves on the surface of the liquid jet when their amplitude becomes large.

The di�erence between the experimental and theoretical results can be seen in ®gure 6. In this
graph, the measured wavelengths of liquid jet prior to breakup and the calculated critical wave-
lengths are plotted. For the varicose mode, the theoretical critical wavelength decreases much
faster than the experimental one as the applied voltage increases. The kink mode of liquid jet
deformation is observed to occur at higher voltage and with wavelength much larger than that
obtained from the theoretical analysis. Here, the fact that the velocity of the liquid jet injected
from the needle and the in¯uence of the surrounding air on the development of the wave on the
liquid jet surface are neglected in the present analysis may lead to the aforementioned disagree-
ments between the theoretical and experimental results. Moreover, the present theoretical model
is based on the assumption of inviscid ¯uids. So it can not account for the e�ect of shear stress

Figure 4. Growth rate variation with needle-plate spaces at applied voltage V0=5 kV.
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acting on the liquid jet surface, which may play an important role in the development of surface
disturbances.

5 . CONCLUDING REMARKS

Some previous theories on electrohydrodynamic jet atomization are limited to axisymmetric
deformation of the jet surface. They are not capable of predicting commonly observed sinuous

Figure 5. Photographs of the liquid jet injected into still air for various applied voltages at mass ¯ow
rate mÇ=3.07 g/min.

Figure 6. Experimental and theoretical wavelengths variation with applied voltages for needle-plate
space h= 20 cm. The experimental data are obtained at mass ¯ow rate mÇ=3.07 g/min.
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deformation, or snake-shape of the jet. The present study derived a dispersion equation that
accounts for the growth of the axisymmetric, as well as the non-axisymmetric disturbances with
taking into account the electric ®eld con®guration of the needle-plate system for liquid spraying.
The calculation of the growth rate of disturbances on the surface of the electrically charged
liquid jet from the available dispersion equation, which is derived from the Lagrange equation
of motion, reveals the following facts.

1. For low electric ®eld strength, the axisymmetric mode has a higher growth rate than that of
the non-axisymmetric one at all wavelength ranges. With increasing in electric ®eld strength,
the growth rate of non-axisymmetric mode grows more rapidly and eventually approaches
that of axisymmetric mode. As a result, the present theory well predicts the varicose defor-
mation of the charged liquid jet at low electric ®eld strength and its possible snake-shape de-
formation at high electric ®eld strength.

2. With increasing applied voltage and/or shortening needle-plate distance, i.e. increasing elec-
tric ®eld strength, the critical wavelength is decreased and the critical growth rate is
increased. These mean that the droplet size is reduced and the liquid jet length is shortened,
which are qualitatively consistent with the experimental results.

However, the calculated critical wavelengths appear to be small at high electric ®eld strength,
which are in contrast with those obtained experimentally, in particular, for the kink mode. The
kink mode in fact takes place only at long wavelength ranges. This phenomenon can not be pre-
dicted by the present theoretical analysis. It is thought that the velocity of the liquid jet and the
in¯uence of the surrounding air, as well as the liquid viscosity are necessary to be taken into
account for the instability analysis of the liquid jet.
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